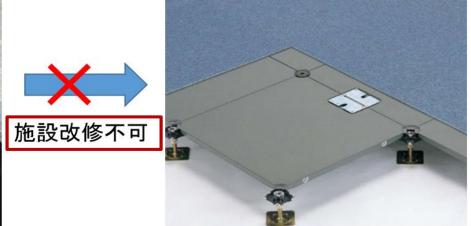
P1013S 産業界 R&D紹介 ポスター

分析機器のリスク危機管理

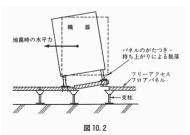
地震対策の現状と提案

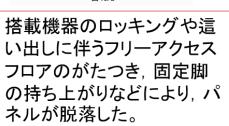
○加藤恒雄¹ 小林英治² 有限会社キョウエー¹ 株式会社セノ²

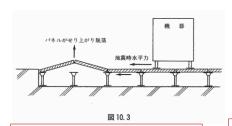

【1】はじめに 室内設置機器の現状

①機器設置の2重床が未固定で外れる。

②機器を床固定しても、床面ごと転倒する。 ②稼働中の機器を移動せず、床下から機


パネルロック対策無


パネルロック対策有り


【2】非ロック状態の2重床の危険性

無固定時のフリーアクセスフロアーの耐震性

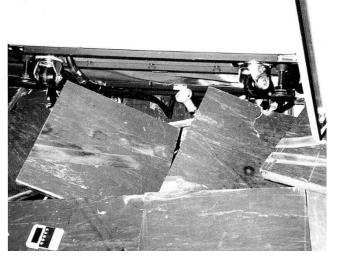
過去の地震(阪神・淡路大震災等)では非ロック状態の床面では地震動によりフロアパネ ルが競り上がり・脱落し、設置機器転倒事故も発生した

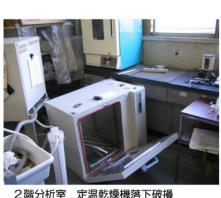
搭載機器の脚部から 受ける地震水平力によ り、フリーアクセスフロ アのパネルがせり上が り脱落した。

フリーアクセスフロアの一部の パネル取り外し部分にパネル せり持ちの横ずれが集中し、 パネルが脱落し支柱が変形し

1978年6月12日発生の宮城県沖地震の被害パターンがおおむね6種類有ると分類されている。

室内の床面無固定時の被害

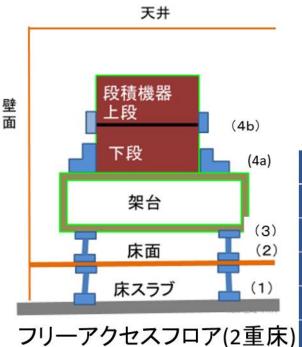



図3.22 フリーアクセスフロアの床パネルの外れ15) 図3.23 フリーアクセスフロア被害による 機器の転倒15)・・・阪神・淡路大震災調査報告編集委員会「阪神・淡路大震災調査報告 建築 編-6 火災 情報システム」日本建築学会;1998年

室内の実験機器類無固定時の予測被害イメージ 宮城県保健環境センター会報第30号 2012より引用

上機器

目立型機器

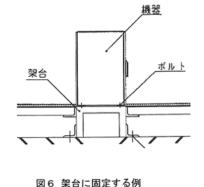


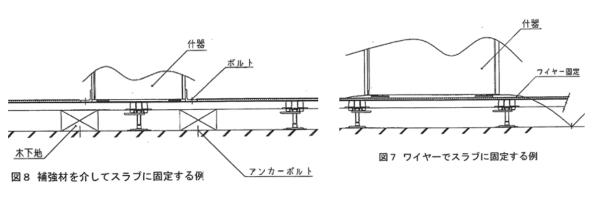
(3) 対策 1kgf/cm以上の耐震性能を

個所	制約条件	施工方法制限	対処方法
床下	緊急点検時、固定解除	床面開閉機能を 残す	上下固定、分離可能
	日常点検、床下検査 未実施	経年劣化の素材 不可	粘着マット不使用
全体	機器を分解・停止・移動 不可	床面非ロック維持	機器直下の 床面固定
	機器に振動・汚染不可	床の穿孔不可	非穿孔方式採用

全てのユニットを一体化させる

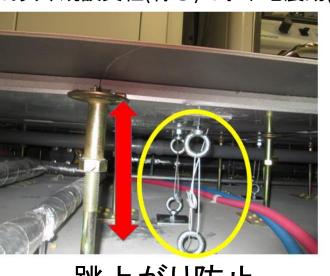
床スラブ+床面(床タイル+フロアパネル)+機器





	No	固定箇所		
	(4b)	上段機器⇔下段機器		
	(4a)	下段機器⇔架台上面		
	(3)	架台下部⇔床面		
ı	(2)	床面(床タイル⇔フロアパメル)		
F)	(1)	床スラブ⇔床面		

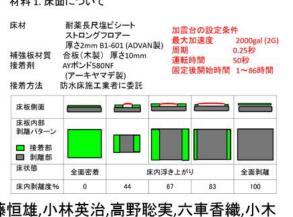
床下対策例をフリーアクセスフロア工業会発行のフリーアクセスフロア 什器固定事例集を参考にした。



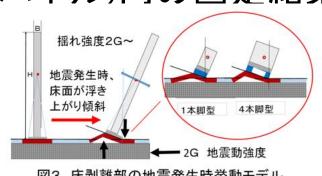
【4】 結 果

(1) 床スラブ⇔床面の固定

上下固定金具+ワイヤー連結型(黄●)は垂直地震動(赤⇔)による跳ね上げ対策 であり、既設支柱(青●)で水平地震動(赤⇔)による横ずれ落下対策と併用する



跳上がり防止


横ずれ防止

(2)床面(床タイル⇔フロアパネル)内の固定結果

ニトリルゴム系接着剤が作業 性に優れており、実用的な引 張張強度(430kgf/100cm)を有 していた。

加藤恒雄,小林英治,高野聡実,六車香織,小木 曽昇:ラックの耐震固定時に発生予測される残 留リスクへの対策、実権動物と環境第47号24

内剥離度 83% 60 cm

試験終了後の床剥離確認:変化無

(3)・(4)床面上全てのユニットを1体化の耐震効果結果(赤枠)

実験内容		(1)	(2)	(3)	(4)
固定有無	機器	0	×	0	×
	架台	0	0	×	×
固定効果		機器・架台とも 無転倒	機器落下	架台転倒	機器・架台とも 転倒
被害発生 時間		影響無	2秒後	2秒後	3秒後
実験中の挙 動					

加震機(ダイヤル値10で周期0.25秒)により震度7(X·Y·Z軸2000gal)を50秒間加震

全てのユニットを一体化させた耐震固定例

0					
	DNA アナライザ	LC-MS	次世代 シーケンサー	倒立顕微鏡	冷凍冷蔵庫
全景					
機器と架台					
架台と 床面					
床面内		D. C.			
床下と床面			0		

他、①対策時の各固定面における比較表 ②信頼性の担保資料 ③各種機器・設備類の 施工例の説明致します。

結 論

研究所のリスク危機管理として床 スラブ⇔非ロック状態床面⇔稼働 中の機器(A卓上機器+B架台、C 自立型機器)を、非穿孔型耐震具 により1体化させて研究停滞リスク 低減を図ることは有効で有る。

キョウエーが協力できること

- (1)地震対策のコンサルタント
- (2)立地条件・設置環境・想定震度を 考慮した耐震固定方法、器具の 開発•製作•提案•施工